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ABSTRACT 

Enforcing red-light runners is known as an engineering solution to enhance intersection safety. However, 

the efficiency of automated Red-Light Camera (RLC) programs is always questioned mainly because of the 

inaccuracy in post-implementation reviews and difficulties with the financial viability of the program. In 

this paper, first, we propose a model to capture the effect of RLCs on intersection safety by including the 

spatial dependency between intersections crashes, unobserved heterogeneity, and the spillover effect of 

enforcing cameras. In this context, a Bayesian hierarchical spatial model is implemented to estimate crash 

frequency at intersections. Second, an optimization problem is proposed to seek the optimal allocation of 

RLC across intersections. The model was examined using the injury crashes collected from 150 

intersections located in the City of Chicago. The results show that the probability of crashes decreases at 

intersections equipped with enforcing camera by 6%. Also, the spillover effect of cameras is examined in 

this study by capturing the safety impact of cameras on other adjacent intersections. It is shown that crash 

risk is reduced by 2% for an intersection located within 1 km network distance from the RLC. Using the 

estimated impacts of RLC intersection safety, the optimum location of the cameras across the Chicago 

intersection can reduce the number of injury crashes by 13%.  

 

Keywords: Red-Light Camera, Bayesian Hierarchical Spatial Model, Spillover Effect, Optimal RLC 

Allocation  



Sohrabi, Lord    

 

3 

 

INTRODUCTION 

Intersection safety is one of the most significant issues many cities face in managing traffic safety. It has 

been shown that red-light running (RLR) is an important contributing factor for crashes at signalized 

intersections [1]. According to the Insurance Institute of Highway Safety (IIHS), red-light runners 

encompass about 800 deaths and 137,000 injuries annually in the U.S. [2]. In a recent study, the intersection 

safety of 57 cities that have implemented an RLC program was compared to 33 cities that decided not to 

implement such a program [3]. The comparison showed that the ratio of RLR fatal crashes per capita to all 

intersection related fatal crashes improved by 21% after the RLC program implementation.  

Despite the indisputable role of RLC on driver behavior, RLC programs have always been under 

scrutiny. One common argument against the program is that RLCs exacerbate the intersection safety by 

referring to the increase in the number of crashes in some cities or in a given intersection after RLCs are 

installed. An evaluation of RLC in seven cities revealed that right-angle crashes were reduced by 25% 

while the rear-end crashes increased by 15% [4]. Given that right-angle crashes are inherently high injury 

risk crashes comparing to rear-end collisions, the RLC program may still improve safety even if the total 

number of crashes increases. The crash occurrence is dependent on many factors including the service 

volume of the intersection, local land use developments, intersection geometry and control, users 

characteristics, etc., which needs to be considered before jumping into conclusion. This reveals the 

importance of engineering analysis of the RLC impact on traffic safety based on sufficient analyses of risk 

factors.  

In addition, many RLC programs have been widely accused of being used to generate revenues for 

cities rather than being used for improving safety, given fining regulations. However, the number of 

communities using RLCs has been dramatically decreasing since 2012 (from 533 to 430 communities) 

because of the difficulties in sustaining the financial viability of the program [2]. Since the costs of the 

system are mainly attributed to the RLC operation costs, efficient system design can help to overcome the 

financial barriers associated with the RLC program. In this case, the RLC allocation problem arises. 

Typically, cameras are recommended to be installed at intersections with a higher number of red light 

running-related crashes or violations [2, 5], however, given the potential impacts of RLCs on the 

intersections in the vicinity, this approach may not lead to optimum RLC allocation.  

In this study, first, we propose a methodological framework with the aims of capturing the effect of 

RLCs on injury crash frequency by: (1) taking into account the observable factors (e.g. land use, 

intersection geometry and service volume) and unobservable spatial factors (e.g. immeasurable land use, 

social activities, and special events) that affect the crash frequency, (2) considering the unobserved 

heterogeneity at an intersection such as variation in drivers’ characteristics, and (3) investigating the spatial 

effect of the RLC on other intersections’ safety. Second, we apply the proposed model results to optimize 

the RLC allocation in the system. We use data collected from the City of Chicago RLC program for 

evaluating the proposed model.  

 

LITERATURE REVIEW 

Review of literature finds RLR violation is an important issue in intersection safety [6-8], and enforcement 

by RLC is introduced as an effective way to reduce RLR violations [9-11]. The effectiveness of the RLC 

has mainly been investigated using before-after studies (e.g. [5, 12-14]). Also, statistical models have been 

used for examining the RLC effectiveness in the form of linear, logistic, and generalized linear models [6, 8, 

9]. A set of variables are used in these studies to better capture the RLC impacts comprising the intersection 

control, geometry or functional characteristics. The red and yellow light durations and cycle length are 

features that can be used for reducing traffic violations [7, 15, 16]. The number of approaches at the 

intersection, speed limit, right/left turn restriction, and the number of lanes are the most significant 
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variables that have been used in previous studies to characterize the intersection geometry [5, 6]. Also, the 

positive association between the intersection traffic and RLR is examined in the form of 

volume-to-capacity ratio of the average daily traffic [5, 6, 9].  

The unobservable factors are generally ignored in these models. The role of unobserved heterogeneity 

in crash frequency modeling context is underlined by Lord and Mannering, and Mannering and Bhat [17, 

18]. Ignoring the unobserved heterogeneity can result in inefficient and inconsistent parameter estimates 

[18]. The spatial dependency and heterogeneity in crash prediction models have been addressed in several 

studies using random parameters, spatial conditional autoregressive (CAR), and spatial weighting 

techniques [19-22]. Spatial dependency can be driven from the unobserved similarity in interacted traffic 

flow as well as land-use and intersection characteristics [23]. The effect of RLC on intersections located 

within the vicinity of an RLC (i.e., spatial spillover effect) has initially been discussed by Retting et al. in 

1999 and then further discussed by other researchers [24-27]. Ahmed and Abdel-Aty indicated that in 

addition to significant crash reduction at intersections equipped with an RLC, the other intersections’ safety 

improved in lesser magnitude but still significantly [27]. 

This paper contributes to the literature by filling the gap in previous studies. In this regard, we propose 

using a Bayesian hierarchical spatial model capable of encountering the unobserved heterogeneity and the 

spatial dependency between intersections crashes. Also, the spillover effect of the RLC is captured in the 

form of a spatial weighted variable. 

 

METHODOLOGY 

The proposed Bayesian hierarchical spatial model consists of three levels [28]: 

1) Data model: [data | process, parameters], 

2) Process model: [process | parameters], 

3) Parameter model: [parameters]. 

In the first level, the data model describes the distribution of the observed crashes (𝑧) given the true 

process 𝜆(. ). We assume crashes are independent conditional on 𝜆(. ), which is a valid assumption in crash 

measurement context. In other words, independence in the data model implies that the measurements of 

crashes frequency at intersections are independent. The data 𝑧 = 𝑧(𝑆) is observed at 150 points or 

observations (intersections), 𝑆 = {𝑠1, 𝑠2, … , 𝑠150}. The data model then becomes [𝑧|𝜆(𝑆)]. For crashes data 

passion distribution is usually assumed: 

𝑧|𝜆 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)        (1) 

The spatial dependence in crashes is modeled in the second level, the process model. The process 

model 𝜆(. ) conditional on the process parameters is assumed Gaussian stochastic process (lognormal given 

the log-link) as: 

𝜆(. )|𝛽, 𝜃𝑐 ~ 𝐺𝑃(𝜇, 𝐶)        (2) 

where 𝑙𝑜𝑔(𝜇) = 𝑥(𝑠)′𝛽, 𝑥(𝑠) and 𝛽 are vectors of covariates and coefficients. 𝜃𝑐 is the parameter vector 

in respect to covariance function. 𝐶 is covariance function such that 𝐶(𝑠1, 𝑠2) = 𝐶𝑜𝑣(𝜆(𝑠1), 𝜆(𝑠2)). The 

spatially correlated random effect captures by this covariance function. We define the process with a 

spatially isotropic random field. This assumption implies that the mean is constant over space (𝜇(𝑠) =

𝜇(𝑠 + ℎ) ≡ 𝜇), and the covariance function is only function of distance: 𝐶𝑜𝑣(𝑦(𝑠), 𝑦(𝑠 + ℎ)) =

𝐶(𝑠, 𝑠 + ℎ) = 𝐶(||ℎ||. Hence, the covariance function takes the form: 

 𝐶 = 𝜎2𝜌(ℎ)         (3) 

where 𝜎 is the variance and 𝜌(ℎ) is the correlation function as a function of ℎ. Two correlation 
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functions, Matérn and Exponential, are examined in this study. The Matérn and Exponential correlation 

function are specified as [28]: 

Matérn:                        𝜌(ℎ) =
21−𝜈

𝛤(𝜐)
(

ℎ

𝛼
)

𝜈
𝐾𝜈 (

ℎ

𝛼
) ,              𝛼 > 0,   𝜈 > 0    (4) 

Exponential:                𝜌(ℎ) = 𝑒𝑥𝑝 (−
ℎ

𝛼
),                             𝛼 > 0  (5) 

where 𝛼 and 𝜈 are parameters of the covariance function and estimate along with 𝜎 which construct the 

parameter vector 𝜃𝑐. These parameters control the strength and scale of the spatial autocorrelation. The 𝐾𝜈 

is a modified Bessel function in second kind of order 𝜐.  

For parameter inference of hierarchical spatial model, we need to integrate the likelihood of data:  

𝐿(𝛽, 𝜃) = [𝑧|𝛽, 𝜃] = ∫[𝑧, 𝜆|𝛽, 𝜃]𝑑𝜆 = ∫[𝑧|𝜆][𝜆|𝛽, 𝜃]𝑑𝜆   (6) 

Given the Poisson distribution of the count data model and the Gaussian process of the process model, 

the likelihood function turns into the equation (7): 

𝐿(𝛽, 𝜃) = ∫ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑧|𝜆)𝑁(𝜆|𝜇, 𝐶)𝑑𝜆     (7) 

The maximum likelihood estimate (MLE) of 𝛽 𝑎𝑛𝑑 𝜃 are defined as the values that maximize the 

likelihood function 𝐿(𝛽, 𝜃), or the log-likelihood ℓ(𝛽, 𝜃) = 𝑙𝑜𝑔𝐿(𝛽, 𝜃). Based on the Bayesian thinking, 

the parameter distribution consists of the prior distribution for 𝛽. So, the prior distribution is [𝛽]. In this 

case, the posterior is given by: 

[𝛽, 𝜃|𝑧] =
[𝑧|𝛽, 𝜃][𝛽]

∫ [𝑧|𝛽, 𝜃][𝛽]𝑑𝜃
𝜃

∝ [𝑧|𝛽, 𝜃][𝛽] = 𝐿(𝛽, 𝜃)[𝛽]    (8) 

For this problem, the MLE is not available in a closed form and so is posterior. In this case, a numerical 

method, Markov Chain Monte Carlo (MCMC) simulation, is used for determining the posterior.  

Three goodness-of-fit measures, Mean Absolute Deviance (MAD), Mean-squared Predictive Error 

(MSPE), and Deviance Information Criteria (DIC) were used for assessing the model (equations 9 to 11): 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑧𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑧𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝑛

𝑖=1      (9) 

𝑀𝑆𝑃𝐸 =
1

𝑛
∑ (𝑧𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑧𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2𝑛

𝑖=1      (10) 

𝐷𝐼𝐶 = 𝐷̅ + 𝑝𝐷 = 𝐷(𝜃) + 2𝑝𝐷      (11)  

where 𝑛 is number of samples, 𝐷 is the average deviance, 𝐷(𝜃) is the deviance of the posterior, and 𝑝𝐷 is 

the effective number of parameters of the hierarchical model.  

 

ANALYSIS 

The model was implemented using data collected as part of the City of Chicago RLC program. Chicago has 

one of the longest-running and largest RLC enforcement systems in the US and has been investigated by a 

few researchers [5, 29]. Data from the periods 2005-2007 (before RLC installation) and 2010-2012 (after 

RLC installation) are employed for modeling. The model is developed using injury crash frequency data of 

150 intersections where 90 of them were equipped with cameras in 2010-2012. 

Data 

In this study, four sets of data are used including; (1) crash data (all injuries: fatal, incapacitated, 

non-incapacitated, and possible) in two time periods, 2005-2007 and 2010-2012, (2) Chicago land-use, (3) 

RLC spatial indicators, and (4) the intersections function, control, and geometry characteristics. 150 
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intersections in Chicago are studied, where the cameras were active for 90 of them. The studied 

intersections are shown in Figure 1.  

 

Figure 1. The RLC distribution across Chicago intersections in 2010. 

Crash Data 

The crash dataset consists of the aggregated annual injury crash frequencies that occurred at intersections 

before and after installation of RLCs, both at signalized intersections with (90 sites) and without (60 sites) a 

camera. The preliminary analysis of the crash data shows that the average annual number of crashes 

decreased by 12% after installing cameras. On the other hand, a (raw) 47% increase in rear-end crashes was 

observed after the RLC program (Table 1). Figure 2 shows the ratio of all types of crashes (all severities) 

over Annual Daily Traffic (ADT) at intersections. From the figure, the spatial dependency exists between 

intersection crashes.  

 

 

 

 

Table 1. Number of Injury Crashes at studied Intersections Before and After the RLC Program 

RLC Distribution at Chicago Intersections 
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Intersection 

Type 

Crash type 

(annual) 

Number of Crashes 
Change 

(percent) 
Before Installing 

Camera 

After Installing 

Camera 

All studied 

intersections 

Total Crashes 1777 1557 -12.4 

Total Crashes Excluding 

Rear-End 
1496 1142 -23.7 

Rear-End Crashes  281 415 47.7 

Studied 

intersections 

with camera 

Total Crashes 1228 1063 -13.4 

Total Crashes Excluding 

Rear-End 
1038 767 -26.1 

Rear-End Crashes 190 296 55.8 

Land-Use 

It is shown that the drivers take more risk while driving under the influence which can cause red-light 

running [30, 31]. We tested this hypothesis by examining the effect of land-use activities which serve 

alcohol on intersections crash frequency. To this extent, the major points of interests (POIs) in Chicago are 

collected using the Open Street Map POI dataset and corresponding variables are created in the form of the 

POIs density in 500, 700 and 1000 meters buffer around the intersection. The distribution of bars and 

restaurants is illustrated in Figure 2. 

  

(a) (b) 

Figure 2  Injury crashes per 10000 ADT distribution across Chicago intersections (a) before installing RLCs, 

and (b) after installing RLCs 

  

Intersection Crash Distribution Before the RLC Program 

 

Street 

Type 

Variable Statistic/ 

Condition 

With RLC Without RLC 

(60 sites) 
 

(90 sites) 

M
a

jo
r 

Average AADT  

[2005-2007] 

(veh/day) 

Minimum 7,000 10,100 

Maximum 55,500 61,000 

Mean 24,200 22,809 

Std. dev 9,243 9,526 

Average AADT 

[2010-2012] 

(veh/day) 

Minimum 5,625 10,000 

Maximum 58,750 56,800 

Mean 23,154 21,587 

Std. dev 9,463 8,693 

Number of Lanes Minimum 2 2 

Maximum 8 6 

Mean 3.6 3.2 

Std. dev 1.1 1.2 

Right-Turn-on-Red 

(proportion of intersections) 

Prohibited 

Limited 

9% 8.50% 

Allowed 18% 20.50% 

Not-controlled 73% 71.00% 

Left Turn Lane Not Present 8% 15% 

(proportion of intersections) Present 92% 85% 

Posted Speed Limit 

(miles/hr) 

Minimum 20 30 

Maximum 35 35 

Mean 29.9 30.5 
Std. dev 2.1 1.5 

Median Not Present 67% 71% 

Present 33% 29% 

M
in

o
r 

Average AADT 

 [2005-2007] 

(veh/day) 

Minimum 375 4,800 

Maximum 40,150 27,500 

Mean 17,022 14,070 

Std. dev 5,989 4,872 

Average AADT  

[2010-2012] 

(veh/day) 

Minimum 356 2,775 

Maximum 38,300 25,200 

Mean 16,136 13,333 

Std. dev 6,260 4,988 

Number of Lanes Minimum 2 2 

Intersection Crash Distribution After the RLC Program 

 

Intersection Crash Distribution After RLC 

Crashes per 10,000 ADT: Crashes per 10,000 ADT: 
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RLC Distribution 

To be able to examine the spillover effect of RLCs, spatial indicators were produced. The distance matrix of 

Chicago intersections was extracted from the Google API service. In addition to testing the linear spillover 

effect of RLCs, the presence of a camera at the intersection is spatially weighted in the form of the inverse 

spatial weighted and squared inverse spatial weighted. 

Intersection Characteristics 

While the intersection characteristic impacts on crashes are broadly illustrated in the literature, various 

variables were analyzed to measure this effect. The intersection function was defined in term of the annual 

traffic passing through the intersection and speed limit. The possibility of right turn on red (after stop) and 

the availability of left lanes in the intersection were evaluated. The number of lanes and the median type of 

intersections can be a helpful representative of the way intersection influence the drivers’ behavior. Table 2 

summarizes key variable statistics.  
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Table 2. Summary of intersections characteristics 

Street Type Variable Statistic/ Condition 
With RLC 

(90 sites) 

Without RLC (60 

sites) 

Major 

Average AADT  

[2005-2007] 

(veh/day) 

Minimum 7,000 10,100 

Maximum 55,500 61,000 

Mean 24,200 22,809 

Std. dev 9,243 9,526 

Average AADT 

[2010-2012] 

(veh per day) 

Minimum 5,625 10,000 

Maximum 58,750 56,800 

Mean 23,154 21,587 

Std. dev 9,463 8,693 

Number of Lanes 

Minimum 2 2 

Maximum 8 6 

Mean 3.6 3.2 

Std. dev 1.1 1.2 

Right-Turn-on-Red 

(proportion of intersections) 

Prohibited Limited 9% 8.50% 

Allowed 18% 20.50% 

Not-controlled 73% 71.00% 

Left Turn Lane Not Present 8% 15% 

(proportion of intersections) Present 92% 85% 

Posted Speed Limit 

(miles per hr) 

Minimum 20 30 

Maximum 35 35 

Mean 29.9 30.5 

Std. dev 2.1 1.5 

Median 
Not Present 67% 71% 

Present 33% 29% 

Minor 

Average AADT 

 [2005-2007] 

(veh per day) 

Minimum 375 4,800 

Maximum 40,150 27,500 

Mean 17,022 14,070 

Std. dev 5,989 4,872 

Average AADT  

[2010-2012] 

(veh per day) 

Minimum 356 2,775 

Maximum 38,300 25,200 

Mean 16,136 13,333 

Std. dev 6,260 4,988 

Number of Lanes 

Minimum 2 2 

Maximum 6 4 

Mean 2.6 2.7 

Std. dev 1 1 

Right-Turn-on-Red 

(proportion of intersections) 

Prohibited 10% 12% 

Limited Allowed 19% 19% 

Not-controlled 71% 69% 

Left Turn Lane 

(proportion of intersections) 

Not Present 13% 15% 

Present 87% 85% 

Median 
Not Present 90% 96% 

Present 10% 4% 
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Model and Discussion 

Using the method discussed above, a model fitting the annual number of injury crashes to the covariates can 

be estimated. The dataset was constructed as panel data containing the annual injury crash frequency in two 

time periods (2005-2007 and 2010-2012), while annual injury crash frequency, the presence of the RLC at 

intersections and some intersections characteristics changes over time. The dataset is split into two sets for 

modeling purposes, test and training sets. The test and training sets were sampled randomly, where the test 

and training datasets contained 20% and 80% of the intersections, respectively. The model was initially 

estimated using the training set, and the test set was used to evaluate the model performance. A binary 

variable was used to indicate the presence of an RLC at signalized intersections.  

Table 3 summarizes the modeling results. The term 𝛼 represents the decay rate of the exponential 

correlation function. According to the value of the exponential correlation function parameter (𝛼), the 

spatial dependency between intersections dissipates within 3 kilometers (approximated with equation 5). 

As expected, the coefficient of intersections traffic is positive which implies that the more vehicles pass 

through the intersection, the more crashes will occur, although at a decreasing rate. A 1% increase in traffic 

in each lane is associated with a 0.5% increase in the probability of a crash. The results show that the more 

lanes that are linked to the intersection, the higher the probability of a crash. According to the model, the 

presence of a median in the minor approach improves the intersection safety by 8%.  The effectiveness of 

RLC is shown by capturing a 6% lesser chance of crash for intersections equipped with a camera. Not only 

RLCs improve intersection safety but also reduces the probability of a crash by 2% within a 1 km radius. 

The land-use characteristics which have been examined in the form of the alcohol-serving POI density in 

500, 700 and 1000 meters buffer, are correlated with the intersection ADT. Consequently, the variables with 

a dominant effect on crashes (intersection ADT) was used. 

Table 3. Modeling results 

Covariance Function 

Parameters 

Variables Estimate 

𝝈𝟐 0.88 

𝜶 0.53 

Process Model Mean (𝝁) 

Variables 
Posterior Mean 

(Posterior Standard Deviation) 

Intercept 
-3.12*** 

(0.77) 

Log of the average daily traffic in each lane 
0.51 * 

(0.14) 

Number of lanes linked the intersection 
0.02 * 

(0.00) 

Median presence in minor approach 
-0.08 *** 

(0.03) 

RLC presence 
-0.06 ** 

(0.02) 

Inverse distance of RLC to intersection (1/km) 
-0.02 ** 

(0.00) 

Goodness-of-Fit 

MAD 3.15 

MPSE 25.41 

DIC 1107.61 

- Asterisks *, **, and *** correspond with statistical significance levels at 5%, 10%, and 15%, respectively. 

- Standard deviations in parenthesis. 

Locating RLCs 

The modeling results discussed above illuminate RLC impacts on injury crash frequencies at an 

intersection. To select the most efficient locations for installing RLCs, we specify an optimization problem 

with an objective function that seeks to maximize the impacts of RLC. Optimization ensures the maximum 
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reduction in injury crashes at intersections in the system after installing RLCs. The optimum solution is 

compared with the Chicago RLC system state in 2010. Crash data from the time period 2005-2007 used for 

evaluating the optimum solution. The objective function is defined as:  

𝑚𝑎𝑥 ∑ (𝑐𝐶𝑦𝑖𝑙𝑖 + ∑ 𝑐𝑆𝑦𝑖𝑙𝑗𝑑𝑖,𝑗
−1)𝑛

𝑗=1
𝑛
𝑖=1       (12) 

subject to:  

𝑙𝑖 = {
1         𝑖𝑓 𝑐𝑎𝑚𝑒𝑟𝑎 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑖          
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

     (13) 

𝑙𝑗 = {
1         𝑖𝑓 𝑐𝑎𝑚𝑒𝑟𝑎 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑗           
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   

     (14) 

∑ 𝑙𝑖
𝑛
𝑖=1 = 𝑅                      ∀𝑖 ∊ 𝐼                   (15) 

∑ 𝑙𝑗
𝑛
𝑗=1 = 𝑅                      ∀𝑗 ∊ 𝐽      (16) 

where 𝑙𝑖 and 𝑙𝑗  indicate if a camera is located at intersection 𝑖 and 𝑗. The magnitude of the safety impact of 

camera presence at intersections is shown by 𝑐𝐶 and the spillover effect is 𝑐𝑆 . 𝑦𝑖 and 𝑦𝑖 represent the injury 

crash frequency at the intersection 𝑖  and 𝑗 , respectively. 𝑅 is the total number of cameras in the system. For 

comparison purposes, the total number of cameras are constrained to 90 (number of cameras in 2010). 

The optimized solution yielded to reduce the total number of injury crashes at intersections. The 

estimated optimum RLC locations are depicted in Figure 3. The total number of crashes in the system 

reduces by 13% after relocating the camera. In other words, camera allocation based on the model results 

can improve the system efficiency by 13%.   

 

Figure 3. Suggested RLC locations across Chicago intersections 
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CONCLUSIONS  

In this paper, a Bayesian hierarchical spatial model was developed for evaluating the RLC effect on injury 

crashes. The proposed model provides the capability of encountering unobserved heterogeneity in crashes 

and spatial dependency between intersections as well as capturing the spillover effect of RLC in the 

network. The model was developed using data collected at Chicago intersections. Among the various 

land-use and intersection characteristics, the crash frequency was associated with the traffic passing 

through the intersection, the size of the intersection in terms of the number of approach lanes, the presence 

of a divided median on the minor approach and the red-light enforcement at the intersection. The results 

shed further lights on the improving impact of RLCs on intersection safety by reducing the chance of an 

injury crash by 6% (all collision types). In addition, 2% fewer crashes are expected at intersections within 1 

km network distance to the RLC location. From a practical standpoint, using the proposed model for 

analyzing the RLC performance can result in a reliable assessment of the program. Also, the results of this 

study can help previous attempts to investigate the economic feasibility of RLC programs and the allocation 

of RLCs in the network to achieve the highest efficiency [7, 32].  We defined an optimization problem using 

the captured RLC impacts, including the spillover effect, with the aim of maximizing the efficiency of 

RLCs in Chicago. Results show that the system performance can be improved by 13% after optimal camera 

allocation. More than 25% of the cameras need to be relocated to ensure maximum efficiency.   
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