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ABSTRACT 1 

Automated Vehicles (AVs) have the potential to improve traffic safety by preventing crashes. Given the 2 

limitations in AV road tests, the safety quantification studies are limited and trivial. Moreover, the AVs’ 3 

safety implications can vary across communities with different socioeconomic and demographic 4 

characteristics. Low-income communities are located near high-capacity roadways, and interstates with 5 

poor roadway infrastructure increase the crash risk in these communities. The household’s socioeconomic 6 

characteristics were shown to be in correlation with motor vehicle safety features, and therefore, higher 7 

risk of crashes. Riskier driving behavior and more traffic violation were found in minorities. In this study, 8 

we proposed a framework to quantify the potential AVs’ safety implications in terms of preventable 9 

crashes and fatalities, accounting for some of the safety challenges of AVs’ operation, including AV 10 

technologies’ safety effectiveness, system failure risk, and the risk of disengagement from the automated 11 

system to manual driving. The framework consists of five tasks: (1) identifying the safety functionalities 12 

of AVs, (3) identifying the AV technologies target crashes, (2) characterizing conventional vehicles with 13 

crash scenarios, (4) exploring AVs’ safety challenges, (5) estimating the number of crashes preventable 14 

by different AV technologies at different levels of automation. We further defined an empirical study to 15 

examine the proposed framework and investigate inequity in AVs’ potential safety implications. To this 16 

end, the relationship between communities’ socioeconomic and demographic characteristics and 17 

preventable fatalities by AVs is explored. The empirical analysis was conducted using 2017 crash data 18 

from the Dallas-Fort Worth area, the fourth largest metropolitan area in the United States. The results 19 

showed that AVs could potentially prevent up to 50%, 46%, 23%, 6%, and 5% crashes for automation 20 

levels 5 to 1, respectively. AVs were shown to be more effective in preventing non-injury crashes. 21 

Among advanced driver assistance systems (ADASs), pedestrian detection, electronic stability control, 22 

and lane departure warning have more significant potential in reducing fatal crashes. We found a U-23 

shaped relationship between preventable fatalities and AVs and household median income and more 24 
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significant safety impacts on ethnically diverse communities. We expect that our results indicate the 1 

theoretical higher bound of AV safety implications. In case we assume no financial barriers in adopting 2 

AVs among communities, low-income, and ethnically diverse communities will benefit most from the 3 

implementation of AV technologies; hence, the cost-benefit of AVs’ deployment will be much higher for 4 

those communities. However, in reality, due to the high cost of AVs, these communities will be the last to 5 

adopt this technology, and therefore they may not take advantage of the benefits of AVs. Potential 6 

policies could also target facilitating vehicle automation and/or shared AVs in low-income communities. 7 

The city and state planning and transportation agencies may consider implementing policies and strategies 8 

for making these technologies available to low-income and ethnically diverse communities at a lower 9 

cost. Potential policies could also target facilitating automated transit and/or shared AVs in low-income 10 

communities. 11 

 12 

Keywords: Automated vehicle; Preventable crashes; Target crash population; Safety; Equity.  13 
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ABBREVIATIONS 1 

Abbreviation Description 

ADAS Advanced Driving Assistance System 

ACC Adaptive Cruise Control 

ACS American Community Survey 

ADS Automated Driving System 

AEB Automatic Emergency Braking 

AV Automated Vehicle 

BSW Blind Spot Warning 

CL Crash Location 

CRIS Crash Records Information System 

DDT Dynamic Driving Task 

DE Driver Error 

DFW Dallas-Fort Worth 

DR Disengagement Risk 

ESC Electronic Stability Control 

FCW Forward Collision Warning 

FHE First Harmful Event 

FR Failure Risk 

LDW Lane Departure Warning 

LKA Adaptive Cruise Control 

MC Manner of Collision 

MV Multi-Vehicle 

NHTSA National Highway Traffic Safety Administration 

ODD Operation Design Domain 

OEDR Object and Event Detection and Response 

PD Pedestrian Detection 

SAE Society of Automotive Engineers 

SE Safety Effectiveness 

SSM Surrogate Safety Measure 

SV Single Vehicle 

TC Traffic Conflict 

TTC Time to Collision 

TxDOT Texas Department of Transportation 

  2 
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INTRODUCTION 1 

According to the National Highway Traffic Safety Administration (NHTSA), human error 2 

contributes to 94 percent of motor vehicle crashes (NHTSA, 2018). Autonomous Vehicles (AVs) have the 3 

potential to eliminate human error, and therefore, in optimistic views, are expected to prevent 94 percent 4 

of motor vehicle crashes. However, AVs are prone to system failure and the associate safety risks, 5 

including, sensors malfunction in detecting objects (pedestrians, bikes and cyclists, vehicles, obstacles, 6 

etc.), misinterpretation of data, and poorly executed responses (Bila et al., 2017). Although AVs, and its 7 

technologies, have been developed to improve driver behavior, their driving operation and safety 8 

effectiveness (e.g., in mix-traffic environment) needs to be measured by field operational tests (Wang et 9 

al., 2020). Risky behavior of AV users because of over reliance on AV technologies was discussed in the 10 

literature as one of the AV safety challenges (Sohrabi et al., 2021). The interaction between AV driver 11 

system may cause safety issues, particularly when the system is disengaged from automated driving 12 

system to manual driving mode (Boggs et al., 2020). Cybersecurity risks is another potential safety 13 

concerns of AVs that can result in motor vehicle crashes (Cui et al., 2019).  14 

In the past years, the interest in the safety evaluation of AVs has increased (Sohrabi et al., 2021, 15 

Furlan et al., 2020), however AVs’ implications for underserved communities has not been explored. 16 

Low-income communities are located near high-capacity roadways and interstates, and have poor 17 

roadway infrastructure, which increases the crash risk in these communities (Huang et al., 2010, Noland 18 

and Laham, 2018, Barajas, 2018). Socioeconomic characteristics of household was shown to be in 19 

correlation with motor vehicle safety features, in that low-income communities were found to observe 20 

higher crash frequency and severity (Girasek and Taylor, 2010). Riskier driving behavior and more traffic 21 

violation was found in minority communities (Elias et al., 2016, Romano et al., 2005). Moreover, due to 22 

their high cost, only wealthy consumers might be able to afford AVs as personal vehicles (Raj et al., 23 

2019, Cohen and Shirazi, 2017). This social inequity in AV adoption could lead to uneven distribution of 24 
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AVs across households and could result in even further segregation of low-income and ethnic 1 

communities.  In this regard, it is not clear how AVs will affect inequity in low-income communities. 2 

Hence, there is an increasing concern about whether or not the AV implementation will help to offset 3 

these discrepancies or will contribute to exacerbate it. 4 

To explore the inequity in AV safety implications, we first need to have realistic estimations 5 

regarding AV safety. Given the limited field operational tests of AVs and the uncertainties associated 6 

with their operation and safety challenges, AV safety evaluations is not trivial. Sohrabi et al. (2021) have 7 

identified six approaches used to quantify the safety effectiveness of AVs, with varying levels of 8 

reliability and data availability―including target crash population, road test data analysis, traffic 9 

simulation, driving simulator, system failure assessment and safety effectiveness estimation. Among these 10 

methods target crash population was widely used in the literature to evaluate the AVs’ safety implications 11 

(Sohrabi et al., 2021).  12 

The target crash population approach quantifies the safety performance of AVs by identifying the 13 

AV technologies functionalities and their potential to prevent certain crash types, hence the “target” 14 

(Kusano and Gabler, 2014, Detwiller and Gabler, 2017, Li and Kockelman, 2016, Lubbe et al., 2018, 15 

Hendrickson and Harper, 2018, Combs et al., 2019, Agriesti et al., 2019). Target crash population 16 

methods were used for evaluating the safety of different levels of automation (Lubbe et al., 2018, Agriesti 17 

et al., 2019) and individual or combined Automated Driving Systems(ADSs) and Advanced Driving 18 

Assistance Systems (ADASs) functions (Kusano and Gabler, 2014, Li and Kockelman, 2016, Detwiller 19 

and Gabler, 2017, Hendrickson and Harper, 2018, Combs et al., 2019). Given the limitations in AV road 20 

tests, one of the advantages of this method is that it relies on the existing conventional vehicle crash 21 

databases rather than limited AV crashes (Sohrabi et al., 2021). In this method, the target crashes for each 22 

technology are identified with respect to the crash characteristics. Depending on the ADAS/ADS system 23 

function and capabilities, the AV technology is then attributed to either specific crash types (e.g., rear-end 24 
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collision, pedestrian crashes) (Detwiller and Gabler, 2017, Hendrickson and Harper, 2018, Combs et al., 1 

2019), specific crash-contributing factors (e.g., distracted driving, speeding, etc.), or critical pre-crash 2 

events (e.g., running a red light, vehicle failure) (Yanagisawa et al., 2017, Lubbe et al., 2018, Li and 3 

Kockelman, 2016, Kusano and Gabler, 2014). After identifying the target crashes, preventable crashes are 4 

extracted from the historical conventional vehicle crash databases. The safety benefits of AVs are finally 5 

quantified in terms of the number of preventable crashes (Kusano and Gabler, 2014, Yanagisawa et al., 6 

2017, Detwiller and Gabler, 2017, Lubbe et al., 2018, Hendrickson and Harper, 2018, Agriesti et al., 7 

2019, Combs et al., 2019) and/or reduced cost of crashes (Li and Kockelman, 2016, Yanagisawa et al., 8 

2017, Hendrickson and Harper, 2018).  9 

Although analyzing the target crash population is a practical approach for evaluating AV safety, 10 

there are certain limitations in target crash population studies. First, quantified benefits are considered 11 

optimistic because they do not explicitly account for the safety challenges AV technologies―namely, 12 

system failure risks, the risk associated with disengagement from ADS to manual driving, and safety 13 

effectiveness of ADASs and ADSs. Second, the selection of target crash scenarios that can be prevented 14 

by a specific AV technology was mainly arbitrary, and the literature lacks a structured mechanism for 15 

identifying preventable crashes. Third, despite the fact that AV safety implications are inconsistent at 16 

different automation levels, no comparison between the extent of the impacts was made in the literature. 17 

Fourth, while previous studies quantified AV safety performance in terms of the number of preventable 18 

crashes and cost of crashes, AVs’ potential in preventing road injuries and were not considered.  19 

This study is developed to (1) address the limitations of the target crash population approach by 20 

proposing a new AV safety quantification framework; and (2) assess the potential equity implications of 21 

AVs. The proposed framework for conducting safety assessment comprises of five tasks: (1) exploring 22 

the functionalities of AV technologies, (2) characterizing crashes by generating 1,650 crash scenarios 23 

(i.e., the sequence of events leading to crash) using four criteria, consisting of crash characteristics and 24 
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crash-contributing factors, (3) identifying target crash scenario for each AV technologies, (4) 1 

incorporating some of the AV safety challenges, including system failure risk, disengagement risk, and 2 

AV safety effectiveness, (5) estimating the number of preventable crashes and crash severities per AV 3 

technologies. We designed an empirical study to examine the proposed framework and further investigate 4 

AVs’ potential safety and equity implications. In the empirical study, we utilized the crash data from 5 

Dallas-Fort Worth metropolitan area, the fourth-largest metropolitan area in the United States (World 6 

Population Review, 2019). We selected 2017 as the base year of the analysis, given that a limited number 7 

of vehicles were equipped with ADASs in 2017. The AV safety implications are then quantified for 8 

contrafactual scenarios in which we assume that 100% of the 2017 traffic fleet consisted of AVs. We 9 

finally stratified preventable crashes and their severities based on the communities’ socioeconomic and 10 

demographic characteristics to assess the equity implications of AVs. In this study, we explore 11 

communities’ characteristics at the census tract level.  12 

The remainder of this paper is organized as follows. In the next section, we delineate the 13 

proposed framework for quantifying AVs’ safety implications and the methodologies behind it. This 14 

section is followed by introducing the empirical study design, including the study area and the datasets. 15 

Then, we report the results of implementing the proposed framework in the studied area. We discuss the 16 

key findings of this study, their implication, and the study limitations. Finally, we conclude the paper and 17 

suggest avenues for future studies.  18 

METHODOLOGY 19 

In this paper, we propose an AVs’ safety quantification framework that accounts for the safety 20 

implications and challenges of different levels of automation (Figure 1). The safety quantification is 21 

executed/performed in five tasks: 22 

Task 1: The AVs’ functionalities are identified. 23 
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Task 2: The conventional vehicle crashes are characterized, and potential crash scenarios are 1 

defined.  2 

Task 3: The target crash scenarios for each AV technology are identified using information from 3 

Task 1 and 2. 4 

Task 4: The safety challenges of AVs’, including system effectiveness, system failure risk, and 5 

disengagement risk, are identified.  6 

Task 5: The number of preventable crashes is estimated for each technology by incorporating the 7 

findings of Task 4 and exploring the target crashes in the historical conventional vehicles’ crash 8 

database. 9 

In the subsequent sections, we discuss each task in more detail. 10 

 11 
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 1 

Figure 1. AVs’ Safety Quantification Framework 2 

Task 1: Identify AV functionalities 3 

Before identifying the AVs’ functionalities, we provide a brief overview of how the different 4 

levels of automation are defined in terms of the dynamic driving tasks (DDT), object and event detection 5 

and response (OEDR), driver responsibilities, and operation design domain (ODD). As known, there are 6 

six levels of automation (Society of Automotive Engineers [SAE], 2018). Level 0 of automation represents 7 

no-automation. At levels 1 and 2 of automation, most of the DDTs are performed by the driver, while 8 

ADASs occasionally help the driver with some of the driving tasks (SAE, 2018). Given that, the ADASs 9 
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have the potential to correct some of the driver’s error. At level 3 of automation, ADS performs OEDR 1 

and is responsible for most of the DDT (SAE, 2018). However, the fallback-ready users should intervene 2 

when the ADS is disengaged. Levels 4 and 5 of automation are able to perform all of the DDT with no 3 

fallback-ready user. Levels 4 and 5 also differ in terms of ODD, where level 5 has unlimited ODD. It is 4 

expected that levels 4 and 5 ADS eliminate most of the driver’s errors; however, level 4’s impacts are 5 

limited to its ODD.  6 

We identified the AVs’ functionalities at different levels of automation by investigating their 7 

capabilities in terms of performing DDTs, OEDR, and ODD. Table 1 summarizes AV technologies and 8 

their functionalities (SAE, 2018). As noted earlier, there are six levels of automation, and each level 9 

comes with various technologies, such as forward collision warning or adaptive cruise control. To this 10 

end, first, we explored levels of automation and their functions and then, based on this analysis, identify 11 

the ADAS and ADS technologies per level of automation. Eight ADASs with the capability of 12 

performing longitudinal and lateral automated driving tasks, collision alert, collision mitigation, parking 13 

assistance, and driving aids are considered for levels 1 and 2 of automation in this study. For levels 3, 4, 14 

and 5 of automation, ADS performs DDT, and crash avoidance capability is characterized based on the 15 

ADS functionalities. Based on the definitions, level 5 of automation has unlimited ODD. Since there is no 16 

universal design for level 3 and level 4 ADS ODD, we assume they can only operate on well-mapped 17 

roads.  18 

  19 
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Table 1. AV Technologies and Functionality 1 

Level of 

Automation 
Functionality ADS and ADAS 

Level 0 Performs no driving task NONE 

Level 1 Performs either longitudinal or lateral vehicle motion 

control but does not complete OEDR. 
• Forward Collision Warning (FCW) 

• Lane Departure Warning (LDW) 

• Blind Spot Warning (BSW) 

• Pedestrian Detection (PD) 

• Automatic Emergency Braking (AEB) 

• Electronic Stability Control (ESC)  

• Adaptive Cruise Control (ACC) or 

Lane Keeping Assistance (LKA) 

Level 2 Performs both longitudinal or lateral vehicle motion 

control but does not complete OEDR. 

Level 1 ADASs, including both ACC and 

LKA 

Level 3 Performs the complete DDT, but does not DDT 

fallback within a limited ODD. 

Level 3 ADS 

Level 4 Performs the entire DDT and is capable of 

responding to DDT fallback if needed, within a 

limited ODD. 

Level 4 ADS 

Level 5 Performs the entire DDT and is capable of 

responding to DDT fallback if needed, with unlimited 

ODD. 

Level 5 ADS 

Task 2: Investigating Crash Characteristics and Defining Crash Scenarios 2 

We investigated the conventional vehicle crashes and defined target crash scenarios using four 3 

criteria: contributing factors, manner of collision, first harmful event (FHE), and crash location (Figure 2). 4 

NHTSA categorized crash contributing factors into three broad groups–driver error, environmental 5 

factors, and vehicle-related factors (NHTSA, 2018). In general, crashes can be attributed to one or more 6 

contributing factors. Per the objectives of this study, we explored the contributing factors for driver error-7 

related crashes, which can be divided into four types: recognition error, decision error, performance error, 8 

and non-performance error (NHTSA, 2018). We further analyzed the driver errors using 11 subcategories, 9 

as listed in Table 2. Manner of collision refers to the manner in which a crash occurred and is divided into 10 

six multiple vehicles (MV) or single vehicle (SV) crash types–angle (MV), rear-end (MV), backing (MV 11 

or SV), run-off-the-road (SV), sideswipe crash (MV), and head-on (MV). The FHE is the first event that 12 
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leads to the crash and represents the road users that were involved in the crash and who were at-fault for 1 

the crash. This is divided into six types: pedestrian at-fault, cyclist at-fault, vehicle, animal, object, and 2 

pedestrian and cyclist. In this study, we did not account for crashes where the pedestrian or cyclist was at-3 

fault. Finally, ADASs and ADSs crash avoidance capabilities are limited to certain locations. For 4 

example, ACC operates at high speeds and can prevent crashes on roads with higher speed limits. As 5 

discussed before, we assume level 3 and 4 ADSs can operate on well-mapped roads. Hence, we assume 6 

they would not be able to prevent crashes on local rural roads. To address the limitations of AVs’ ODD, 7 

we categorized crash locations into five groups to define crash scenarios: 1) intersections, 2) parking, 3) 8 

freeway, highway, and arterials, 4) urban collector and local roads, and (5) rural collector and local roads.  9 

 10 

Figure 2. Criteria for characterizing conventional vehicle crashes 11 

A crash scenario is defined as a combination of driver error, manner of collisions, FHE, and crash 12 

location. Table 2 lists the critical crash scenario elements used in this study. There are 11 driver crash-13 

contributing factors, six manners of collisions, five FHE types, and five location types. Consequently, the 14 

crashes studied in this study can be investigated by exploring a total number of 1,650 unique crash 15 

scenarios (Equation 1): 16 

𝐷𝑟𝑖𝑣𝑒𝑟 𝐸𝑟𝑟𝑜𝑟 (11) ⨯ 𝑀𝑎𝑛𝑛𝑒𝑟 𝑜𝑓 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 (6) ⨯ 𝐹𝐻𝐸 (5) ⨯ 𝐶𝑟𝑎𝑠ℎ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (5) = 1,650 (1) 
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Table 2. Crash Characteristics 1 
Crash Characteristics Criteria Critical descriptors 

Contributing 

Factor 

Driver Error (DE) Recognition error: 

1- Distraction and inattention (DE1) 

2- Looked, did not see (DE2) 

Decision error: 

3- Driving too fast for conditions and road rage (DE3) 

4- False assumption of others’ actions (DE4) 

5- Misjudgment of gap and speed (DE5) 

6- Traffic violation (DE6) 

7- Unsafe maneuver and lane change (DE7) 

Performance error: 

8- Poor directional and longitudinal control, and overcompensation (DE8) 

9- Fail to drive between lanes (DE9) 

Non-performance error: 

10- Drowsiness, taking medication, and illness (DE10) 

11- Alcohol and drug impairment (DE11) 

Environment-

related Factors 

1- Slick roads (ice, loose, etc.) 

2- Glare 

3- View obstructions 

4- Adverse weather (Fog, heavy rain, snow, etc.) 

5- Sign/signals 

6- Road design 

Vehicle-related 

Factors 

1- Steering, suspension, transmission and engine-related 

2- Defective lights 

3- Tire and wheels 

4- Brakes related 

Manner of Collision (MC) 1- Angle (MV*)  (MC1) 

2- Rear-end (MV) (MC2) 

3- Backing (MV or SV**) (MC3) 

4- Off the road (SV) (MC4) 

5- Sideswipe crash (MV) (MC5) 

6- Head-on (MV) (MC6) 

First Harmful Event (FHE) 1- Pedestrian, with driver at fault (FHE1) 

2- Cyclist, with driver at fault (FH2) 

3- Vehicle (FHE3) 

4- Animal (FHE4) 

5- Object (FHE5) 

6- Pedestrian and cyclist, with pedestrian and cyclist at fault (FHE6) 

Crash Location (CL) 1- Intersections (CL1) 

2- Parking (CL2) 

3- Freeways, highways and arterials (CL3) 

4- Urban Collector and local roads (CL4) 

5- Rural Collector and local roads (CL5) 

* MV: Multi Vehicles 

** SV: Single Vehicle 
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Task 3: Identify target crash scenarios 1 

Based on AV technologies at different levels of automation and their functionalities, we 2 

developed a list of target crash scenarios that can potentially be prevented by ADAS and ADS 3 

technology. For example, the ACC is able to control acceleration and/or braking to maintain a prescribed 4 

distance between the following and leading vehicles. According to these functions, we expect that ACC 5 

can potentially prevent crashes caused by (1) recognition error due to distraction and inattentions (DE1); 6 

(2) decision error attributed to the false assumption of other vehicles action as well as a misjudgment of 7 

the gap between the leading and following vehicles and consequently speed choice (DE2); and, (3) 8 

performance error such as poor longitudinal control of the vehicle (DE3). These driver errors may result 9 

in rear-end collision (MC2) of a vehicle (FHE3) at a high-speed freeway, highway, and arterial (CL3). 10 

The combination of these crash characteristics hence leads to four crash scenarios that can be prevented 11 

by ACC that by definition controls acceleration and/or braking to maintain prescribed distance between 12 

the vehicle and leading vehicle.: 13 

1. Scenario 1: DE1 + MC2 + FHE3 + CL3 14 

2. Scenario 2: DE4 + MC2 + FHE3 + CL3 15 

3. Scenario 3: DE5 + MC2 + FHE3 + CL3 16 

4. Scenario 4: DE8 + MC2 + FHE3 + CL3 17 

 18 

Table 3 shows the target crash scenarios that each level of automation, and its technologies, can prevent. 19 

  20 
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Table 3. Number of target crashes 1 

Systems Functions and Capabilities Crash Characteristics  # of 

Target 

Crash 

Scenarios 
DE MC FHE CL 

ADAS  ACC Controls acceleration and/or braking to 

maintain a prescribed distance between it 

and a vehicle in front. May be able to come 

to a stop and continue. 

DE1,  

DE4,  

DE5,  

DE8 

MC2 FHE3 CL3 4* 

 LKA Controls steering to maintain the vehicle 

within the driving lane. May prevent the 

vehicle from departing lane or continually 

center vehicle. 

DE8,  

DE9, 

DE10 

MC1 to 

MC6 

FHE2, 

FHE3 
CL3, 

CL4 
60 

 FCW Detects impending collision while traveling 

forward and alerts driver. 
DE1,  

DE4,  

DE5 

MC1, 

MC2, 

MC6 

FHE3, 

FHE4, 

FHE5 

CL1, 

CL3, 

CL4 

81 

 LDW Monitors vehicle’s position within driving 

lane and alerts driver as the vehicle 

approaches or crosses lane markers. 

DE8,  

DE9, 

DE10 

MC1, 

MC4, 

MC5, 

MC6 

FHE2, 

FHE5 
CL3, 

CL4 
48 

 BSW Detects vehicles to rear in adjacent lanes 

while driving and alerts the driver to their 

presence. 

RE2,  

RE4 

MC1, 

MC5 

FHE3 CL3, 

CL4 

8 

 PD Detects pedestrians in front of vehicle and 

alerts driver to their presence. 

DE1,  

DE2,  

DE6,  

DE8, 

DE10 

MC4 FHE1, 

FHE6 

CL1 to 

CL4 

40 

 AEB Detects potential collisions while traveling 

and automatically applies brakes to avoid or 

lessen the severity of impact. 

DE1,  

DE4, 

RE10 

MC1, 

MC2, 

MC3, 

MC6 

FHE1 to 

FHE5 

CL1 to 

CL4 

320 

 ESC Improves a vehicle’s stability by detecting 

and reducing loss of traction. 

DE5,  

DE8 

MC4, 

MC5 

FHE3, 

FHE5 

CL3 8 

ADS L3 

ADS 

Performs the complete DDT, but not DDT 

fallback, within a limited ODD. Eliminates 

level 2 crashes and crashes dues to driver 

recognition error and performance error. 

DE1 to 

DE9 

MC1 to 

MC6 

FHE1 to 

FHE5 

CL2, 

CL3 

720 

L4 

ADS 

Performs the complete DDT, and DDT 

fallback, within a limited ODD 

DE1 to 

DE11 

MC1 to 

MC6 

FHE1 to 

FHE5 

CL1 to 

CL4 

1,320 

L5 

ADS 

Performs the complete DDT, and DDT 

fallback, without ODD limitation 

DE1 to 

DE11 

MC1 to 

MC6 

FHE1 to 

FHE5 

CL1 to 

CL5 

1,650 
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Task 4: AV Safety Challenges 1 

As indicated earlier, the three important safety concerns of AVs are: (1) safety effectiveness (SE) 2 

of ADAS and ADS technologies, (2) system failure risk, and (3) disengagement risk. In general, the safety 3 

effectiveness (SE) can be defined in terms of the number of preventable crashes by AVs compared to 4 

conventional vehicles (Equation 2). Since driving simulator and traffic simulation studies use surrogate 5 

safety measures (SSMs) to evaluate the AV safety impacts, in this study, the safety effectiveness of AVs 6 

is estimated using SSMs. Equations 3 and 4 are examples of using two SSMs―time to collision (TTC) 7 

and traffic conflicts (TC)―to estimate the safety effectiveness of ADASs and ADSs: 8 

SE = 1 −
AVs′crash rate

Conventional vehicles′ crash rate
 

(2) 

SE𝑇𝑇𝐶 = 1 −
AVs′ number of time to collision < treshold

Conventional vehicles′number of time to collision < treshold
 

(3) 

SE𝑇𝐶 = 1 −
AVs′ number of traffic conflicts

Conventional vehicles′number of traffic conflicts
 

(4) 

Wang et al. (2020) synthesized the results of previous traffic simulation and field experiments 9 

that estimated the safety effectiveness of AVs (2020). Conducting a meta-analysis on 89 studies, the 10 

authors estimated the safety effectiveness of seven ADASs―in descending order of safety effectiveness 11 

PD, LDW, FCW, ESC, BSW, AEB, ACC (reported in Table 4). Given that there is a limited number of 12 

studies on the LKA impacts, we assumed that the effectiveness of LKA would be similar to ACC. ADS’ 13 

safety effectiveness was found to be different for intersections and road segments. We sourced the ADS 14 

effectiveness at intersections from the Morando et al.’s study (2018), in which they evaluated the safety 15 

impacts of AVs in terms of changes in the conflicts between vehicles after AVs’ implementation using 16 

traffic microsimulations (Morando et al., 2018). Using Equation 4, we converted changes in the number 17 
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of conflicts to the safety effectiveness of AVs. The ADS effectiveness in road segments was extracted 1 

from Kockelman et al. (2016) study, which used traffic microsimulations to evaluate AVs’ safety impacts 2 

under various operational conditions and measured the safety impacts in terms of the number of conflicts 3 

between vehicles.  4 

Another challenge in AVs’ operation and safety is system failure (Koopman and Wagner, 2016). 5 

The system failure can happen due to malfunctioning sensors in detecting objects (pedestrians, bicyclists, 6 

vehicles, obstacles, etc.), misinterpretation of data, and poorly executed responses that can jeopardize the 7 

reliability of AVs and cause serious safety concerns in an automated environment (Bila et al., 2017). The 8 

failure rate of each component of AVs was synthesized by Bhavsar et al. (2017). To this end, the 9 

components of the ADAS and ADS were examined individually, and the failure rate is determined based 10 

on the evidence from the existing literature. Bhavsar et al. (2017) developed a hierarchical model to 11 

synthesize the AVs’ failure rates associated with the vehicle. According to the results of their model, the 12 

failure risk of hardware system (sensor and integration platform failure) and software system were 4.2% 13 

and 1.0%, respectively.  14 

The third safety concern of AVs is related to the disengagement risk, which refers to the risk of 15 

AV being involved in a crash as a result of the transition from automated driving mode to manual driving. 16 

For levels 3 and 4 of automation, drivers need to take over the control of the vehicle in case of technology 17 

failure or unsafe driving conditions. The disengagement from ADS to manual driving was studied using 18 

driving simulators and showed to impose crash risks (Desmond et al., 1998, Happee et al., 2017). In a 19 

study by Happee et al. (2017), the effects of automation in take-over scenarios were investigated in a 20 

high-end moving-base driving simulator. Drivers performed evasive maneuvers encountering a blocked 21 

lane in highway driving, and the performance of drivers in the manual driving environment and the 22 

automated driving environment with a disengagement to manual driving were compared, using TTC 23 

measures. Using Equation 4 and assuming a four seconds threshold for TTC (Sultan and McDonald, 24 

https://www.sciencedirect.com/topics/engineering/driving-simulator
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2003), the disengagement risks were estimated to be 49%. We assumed a similar disengagement risk for 1 

both levels 3 and 4 of automation due to the limitations in the literature on this topic. It is also assumed 2 

that AVs would disengage from the ADS before encountering a crash scenario, and so the driver is not 3 

able to respond to 49% of crash scenarios appropriately. 4 

A summary of the safety challenges of AVs that were considered in this study is summarized in 5 

Table 4.  6 

  7 
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Table 4. Safety Challenges of AVs 1 

System 
Safety 

Effectiveness 
Source 

System Failure 

Source 
Disengagement 

Risk 
Source Software 

Failure 

Risk 

Hardware 

Failure 

Risk 

ACC 
9.3% 

[5.0,0.14] 

(Wang et al., 

2020) 

1.0%* 4.2%* 
(Bhavsar et 

al., 2017) 

NA  

AEB 
25.7% 

[2.0,31.0] 

(Wang et al., 

2020) 
NA  

BSW 
15.0% 

[10.0,20.0] 

(Wang et al., 

2020) 
NA  

ESC 
43.2% 

[38.0,48.0] 

(Wang et al., 

2020) 
NA  

FCW 
21.1% 

[17.0,25.0] 

(Wang et al., 

2020) 
NA  

LDW 
21.0% 

[10.0,33.0] 

(Wang et al., 

2020) 
NA  

PD 
38.9% 

[36.0,42.0] 

(Wang et al., 

2020) 
NA  

LKA 9.3%**  - NA  

L3 ADS  

(Intersection) 
64.0%* 

(Morando et al., 

2018) 
49.0%* 

(Happee et al., 

2017) L3 ADS  

(Highway 
87.0%* 

(Kockelman et 

al., 2016) 

L4 ADS 

(Intersection) 
64.0%* 

(Morando et al., 

2018) 
NA  

L4 ADS 

(Highway) 
87.0%* 

(Kockelman et 

al., 2016) 
NA  

L5 ADS 

(Intersection) 
64.0%* 

(Morando et al., 

2018) 
NA  

L5 ADS 

(Highway) 
87.0%* 

(Kockelman et 

al., 2016) 
NA  

* Confidence interval is not reported. 

** Speculated (no source available) 

 2 

Task 5: Estimate preventable crashes 3 

Incorporating the findings from Task 4 and exploring AV target crashes in the conventional 4 

vehicles’ crash database, the total number of preventable crashes can be estimated using Equation 5: 5 

𝑃𝐶𝑡 = 𝑇𝐶𝑡  ⨯ 𝑆𝐸𝑡 ⨯ (1 − 𝐹𝑅) ⨯ (1 − 𝐷𝑅) (5) 
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where 𝑃𝐶𝑡 is the number of preventable crashes by technology 𝑡, 𝑇𝐶𝑡 is the number of target crashes by 1 

technology 𝑡, 𝐹𝑅 is the AVs’ software and hardware failure risk, 𝐷𝑅 is the disengagement risk for levels 2 

3, 4, and 5 of automation, and 𝑆𝐸𝑡 is safety effectiveness of AVs’ technologies.  3 

EMPIRICAL STUDY 4 

We design an empirical analysis to examine the proposed AV safety quantification framework 5 

and AV equity implications. The proposed framework quantifies the AVs’ safety implications in terms of 6 

the number of preventable crashes. We further investigate the quantified preventable crashes to explore 7 

(1) the role of levels of automation, and the technologies behind it, in preventing different levels of crash 8 

severity, (2) the potential relationship between preventable road fatalities and communities 9 

socioeconomic and demographic characteristics to assess the equity implications of AVs. In this section, 10 

we briefly describe the study setting, equity assessment method, and utilized datasets.  11 

Study Setting 12 

The safety implications of AVs are quantified in the DFW metropolitan area for the year 2017. 13 

To this end, first, we define five counterfactual scenarios about AVs’ deployment, in which the existing 14 

vehicle fleets (including passenger cars, buses, and trucks) in the DFW area are replaced by five levels of 15 

automation. Using the proposed framework, we estimate the potentially preventable crashes for each 16 

scenario and are compared against the base scenario, i.e., no-automation in the transportation system. The 17 

estimated numbers represent the potential safety implications of different levels of automation in case the 18 

DFW transportation system was automated.  19 

We chose the DFW area as the case study since it is the fourth most populated metropolitan area 20 

in the United States, with more than 7.5 million redisents in 2018 (US Census Bureau, 2019). The study 21 

area contains all road functional classes (both rural and urban roads), including interstate, freeway and 22 
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highway, principal and minor arterials, major and minor collectors, and local roads. Since a limited 1 

number of vehicles were equipped with ADASs in 2017, crash records can be considered a representative 2 

of the DFW area safety with no-automation in the transportation system. According to our preliminary 3 

analysis of the DFW demographic, the DFW area is populated with diverse races and ethnicities.  4 

Equity Assessment 5 

The role of AVs’ safety implications in communities is investigated based on their socioeconomic 6 

and demographic characteristics, assuming 100% market penetration of AVs, and therefore, no financial 7 

restriction in adopting AV in communities. This study considers median household income and household 8 

ethnicity as a proxy for communities’ socioeconomic and demographic status. Moreover, we explored the 9 

communities’ characteristics at the census tract level. Assuming that the vehicles’ occupants are living in 10 

the same zip code as the vehicles’ owners, we mapped the road fatalities to the zip codes in each census 11 

tract. The estimated preventable fatalities can then be stratified based on median household income and 12 

household ethnicity at the census tract level.  13 

Datasets 14 

Crash Characteristics 15 

The crash data was sourced from the Texas Department of Transportation’s (TxDOT) crash 16 

records information system (CRIS). The CRIS data were collected for the year 2017. The crash dataset 17 

includes the crash location, crash characteristics (Table 5), the vehicle’s owner’s residential zip code, and 18 

the crash severity. We focused on crash records from 2017, given that a limited number of vehicles were 19 

equipped with ADASs before the year 2018, which would be in-line with our no-automation assumption 20 

for the base scenario. A total number of 151,881 crashes were collected, of which 738 crashes resulted in 21 

fatalities (0.5%), 34.7% resulted in injuries or possible injuries, and 64.8% resulted in no injury. The 22 

crashes are mostly MV crashes that include more than two vehicles. The rest of the crashes are distributed 23 
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as follows: 15.2% fixed object crashes, 1.7% vulnerable road user (bicycle, pedestrian and motorcycle) 1 

crashes, and 0.5% wildlife crashes. Table 5 represents a summary of crash characteristics in 2017. 2 

Tables 5. Crash Characteristics 3 

Crash Characteristics 

 

Count by Severity # of 

Crashes Fatal Incapacitating Non-Incap. 

Injury 

Poss. 

Injury 

Non-

injury 

Driver 

Error  

Distraction and inattention (DE1) 173 1439 6511 11696 74056 39053 

Looked, did not see (DE2) 9 95 325 569 3292 1636 

Driving too fast for conditions and 

road rage (DE3) 

144 387 947 1057 6182 4659 

False assumption of others’ actions 

(DE4) 

14 157 678 1137 6544 3902 

Misjudgment of gap and speed (DE5) 31 185 1237 3222 30097 12443 

Traffic violation (DE6) 207 1229 7093 14032 65382 29955 

Unsafe maneuver and lane change 

(DE7) 

94 529 3108 6720 66676 27899 

Poor directional and longitudinal 

control, and overcompensation (DE8) 

105 777 4377 10099 66881 28532 

Fail to drive between lanes (DE9) 54 245 800 1215 7485 5337 

Drowsiness, taking medication, and 

illness (DE10) 

17 165 467 745 2394 2168 

Alcohol and drug impairment (DE11) 57 227 613 647 4626 3187 

Manner of 

Collision 

Angle (MV*) (MC1) 196 1866 11305 24470 146361 62333 

Rear-end (MV) (MC2) 262 2193 13373 34354 231692 84268 

Backing (MV or SV**) (MC3) 9 34 150 184 5078 5253 

Off the road (SV) (MC4) 507 2135 6814 7797 46357 45671 

Sideswipe crash (MV) (MC5) 97 562 2932 6822 75560 30416 

Head-on (MV) (MC6) 220 479 1180 1498 7466 3605 

First 

Harmful 

Event 

Pedestrian, with the driver at fault 

(FHE1) 

141 292 653 446 2223 1516 

Cyclist, with driver at fault (FH2) 7 77 277 204 877 628 

Vehicle (FHE3) 878 6229 35506 80433 528265 209915 

Animal (FHE4) 17 62 179 165 2463 1843 

Object (FHE5) 288 1419 5045 6621 45090 45109 

Pedestrian and cyclist, with pedestrian 

and cyclist at fault (FHE6) 

6 5 11 10 90 48 

Location Intersections (CL1) 342 3383 19514 42282 237524 101943 

Parking (CL2) 2 18 143 374 7847 5042 

Freeways, highways, and arterials 

(CL3) 

861 3852 17733 36229 255266 106828 

Urban Collector and local roads 

(CL4) 

404 3810 21137 46869 279218 133638 

Rural Collector and local roads (CL5) 129 736 3600 5316 45216 20373 
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Household income and ethnicity 1 

The median household income and household ethnicities were collected from the American 2 

Community Survey (ACS) at the census tract level1. The studied area comprises 1,185 census tracts. The 3 

average median household income at the census tract level in 2017 was $67,797, while the lowest and 4 

highest median household income at the census tract level was $13,947 and $249,219, respectively. In 5 

2017, 47% of the DFW population consisted of white ethnicity, and 53% consists of black and Hispanic 6 

ethnicities. Table 6 shows descriptive statistics of the ethnicity and median household income at the 7 

census tracts. 8 

Table 6. Descriptive Statistics of the Ethnicity and Median Household Income at the Census 9 

Tracts 10 

ACS Num. of 

Census Tracts 

Min Max Mean Median 

Median Household Income 1,185 13,947 249,219 67,797 58,814 

Ethnicity, White 1,185 5.6 100.0 65.6 72.3 

Ethnicity, Black 1,185 0.0 93.4 16.1 9.7 

Ethnicity, Hispanic 1,185 0.0 95.9 30.24 22.30 

RESULTS 11 

Preventable Crashes by AV Technologies 12 

Implementing the proposed AV safety quantification framework of DFW crashes, we estimated 13 

the number of preventable crashes for five levels of automation. Table 7 presents the estimation results 14 

for different levels of automation and Levels 1 and 2 ADASs. As expected, the total number of 15 

preventable crashes was higher for higher levels of automation; level 1 AVs can prevent 8,172 crashes 16 

while level 5 AVs can prevent 70,464 crashes. Among the ADASs, FCW showed a superior safety 17 

 

1 Sourced from American Community Survey database available at https://data.census.gov/cedsci/ 
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performance in the studied area. A higher level of uncertainty resulted in levels 3 and 4 ADSs’ 1 

estimations due to the potential impacts of disengagement risk that is applicable to these technologies. 2 

Table 7. Estimated Number and Percentage of Preventable Crashes by AVs 3 

Level of 

Automation 

ADAS and 

ADS 

Safety 

Effectiveness 

 

Failure 

Risk 

 

Disengagement 

Risk 

 

Preventable 

Crashes 

 

Level 1 ACC 9.3%  5.2%  

 

NA 8,172  

 FCW 21.1%  

LDW 21.0%  

BSW 15.0%  

PD 38.9%  

AEB 25.7%  

ESC 43.2%  

Level 2 Level 1 ADASs - - NA 8,797  

LKA 9.3% 5.2%  

 

Level 3 Level 3 ADS 

(Intersection) 

64.0% 5.2%  

 

49.0% 

 

32,485 

 

Level 3 ADS 

(Highway) 

87.0% 

Level 4 Level 4 ADS 

(Intersection) 

64.0% 5.2%  

 

NA 65,157 

 

Level 4 ADS 

(Highway) 

87.0% 

Level 5 Level 5 ADS 

(Intersection) 

64.0% 5.2%  

 

NA 70,464 

 

Level 5 ADS 

(Highway) 

87.0% 

Preventable Crash Severities by AV Technologies 4 

We further analyzed ADASs and ADSs’ safety implications in terms of their potential to prevent 5 

crashes with different levels of severity. To this end, the ratio of preventable crashes 6 

(
# 𝑝𝑟𝑒𝑣𝑒𝑛𝑒𝑡𝑏𝑎𝑙𝑒 𝑐𝑟𝑎𝑠ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
) are estimated. Figure 3 shows the ratio of preventable crashes for different levels 7 

of automation. Levels 1 and 2 of automation can prevent 5% and 6% of crashes, respectively. Upgrading 8 

to level 3 would result in preventing up to 26% of crashes. While level 4 of automation can prevent 46% 9 

of crashes, switching to fully-automated vehicles (level 5) could maximize the safety benefits of AVs by 10 
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preventing 50% of crashes. ADSs could prevent fatalities, incapacitation, and injuries from crashes by up 1 

to 31%. In general, and similar to most ADASs, the ADSs were more effective in preventing non-injury 2 

crashes. 3 

4 

Figure 3. Safety implications of automation levels in terms of crash severity 5 

Figure 4 depicts a graphical representation of the ratio of preventable crashes for ADAS. Among 6 

ADASs, LDW had the most significant impact on preventing severe crashes; they can prevent about 1.6% 7 

of fatalities and 1.3% of incapacitations (i.e., suspected serious injuries). Although the ESC and PD could 8 

prevent a lower percentage of crashes (1.2% and 0.2%, respectively), they are more effective in terms of 9 

preventing fatalities (1.3% and 1.0%, respectively). This is in-line with the fact that ESC and PD target 10 

crashes involving vulnerable road users and run-off-the-road crashes with higher severity rates. Most of 11 

the ADASs are more effective in preventing non-injury crashes compared to injury crashes. 12 

3
%

3
%

3
%

3
%

3
% 5

%

4
%

4
%

4
%

4
%

3
% 6

%

1
5

%

1
5

%

1
4

%

1
4

%

1
4

%

2
3

%

3
0

%

2
9

%

2
9

%

2
9

%

2
8

%

4
6

%

3
2

%

3
0

%

3
1

%

3
1

%

3
1

%

5
0

%

N O N - I N J U R Y P O S S I B L E  I N J U R Y N O N -
I N C A P A C I T A T I N G

I N C A P A C I T A T I N G F A T A L I T Y T O T A L _ P R C N T

R
A

TI
O

 O
F 

P
R

EV
EN

TA
B

LE
 C

R
A

SH
ES

CRASH SEVERITY

Level 1 Level 2 Level 3 Level 4 Level 5



Sohrabi et al. 

27 

 

 1 

Figure 4. ADASs estimated preventable crashes by severity 2 

Preventable Fatalities by Community Characteristics (Equity Assessment) 3 

We further stratified AV preventable fatalities by communities’ socioeconomic and demographic 4 

characteristics at the Census tract level. The results of analyzing preventable fatalities by median 5 

household income are shown in Figure 5(a). Based on this analysis, AVs are expected to have the most 6 

profound positive impacts on communities with median household income less than $35k, where a higher 7 

rate of preventable fatalities was observed. AVs’ role in preventing fatalities is the lowest among 8 

3.0% 

1.5% 

0.0% 

FCW: Forward Collision Warning ♦LDW: Lane Departure Warning ♦ BSW: Blind Spot Warning ♦ 

PD: Pedestrian Detection ♦AEB: Automatic Emergency Braking ♦ESC: Electronic Stability Control ♦LKA: Lane 

Keeping Assistance ♦ACC: Adaptive Cruise Control 
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medium-income communities ($35k to $75k). More fatalities can be prevented in high-income 1 

communities as well.  2 

We also explored the relationship between ethnic diversity and preventable fatalities by AVs. The 3 

results of stratifying crash fatalities based on the percentage of people with Black and Hispanic ethnicities 4 

in the communities (Figure 5(b)) show a more dominant role of AVs in communities with a higher 5 

percentage of Black and Hispanic population. Ethnically diverse communities are expected to benefit 6 

more from AVs’ implementation, particularly at higher levels of automation.  7 

 
(a)  

Household Median Income 
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(b)  

Figure 5. AVs’ preventable fatalities by (a) median household income and (b) ethnicity at the 1 

Census tract level 2 

DISCUSSION 3 

Key Findings and Implications 4 

The results of implementing the proposed AV safety quantification framework on DFW crashes 5 

showed that level 5 of automation has the potential to prevent 50% of crashes and 31% of fatalities. This 6 

figure is significantly lower than speculations regarding AVs’ safety improvement impacts by eliminating 7 

all driver errors and consequently preventing 94% of crashes. The results showed that level 1 of 8 

automation has the potential to prevent 5% of crashes, and upgrading to level 4 can prevent 46% of 9 

crashes. Eliminating level 4 ODD limitations―by upgrading to level 5―could result in a 4% increase in 10 

the number of preventable crashes. Most of the ADASs are more effective in preventing non-injury 11 

crashes compared to injury crashes. LDW, ESC, and PD, on the other hand, showed a more significant 12 
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contribution to injury crashes, perhaps, because these systems target crashes that include vulnerable road 1 

users and higher speeds. A similar observation was found for ADSs, where they were more effective in 2 

preventing non-injury crashes.  3 

A U-shape relationship between AVs’ safety impacts and median household income was 4 

observed. Contributions of AVs to road fatalities are expected to be higher in communities with low and 5 

high income as well as those with a higher percentage of the Black and Hispanic population, while the 6 

impact is lower for median income communities and those with higher white ethnicity percentage. This 7 

could be because of the fact that road fatalities are higher in communities with lower income levels 8 

(Marshall and Ferenchak, 2017). Other contributing factors mentioned in the literature are the ownership 9 

of older and less maintained vehicle fleet (Girasek and Taylor, 2010) and riskier driving behavior (Elias et 10 

al., 2016), which could be addressed by AV deployment. This may also be explained by the poor 11 

transportation infrastructure in these low-income communities, in case we assume most of the crashes 12 

occur in the same zip code where the vehicle owner lives. Higher impacts of AVs on high-income 13 

communities, on the other hand, can be because of more miles driven in these communities (mainly 14 

because of living in suburban areas and owning more vehicles).  15 

Our findings have important policy implications. The initial assessment conducted in this study 16 

indicates that low-income and ethnically diverse communities will benefit more from the implementation 17 

of AV technologies than middle and higher-income communities; hence, the cost-benefit of AVs’ 18 

deployment will be much higher for those communities. However, due to the high cost of the technology, 19 

these communities will be the last ones to adopt the technology, and therefore they may not take 20 

advantage of the benefits of AVs. The city and state planning and transportation agencies may consider 21 

implementing policies and strategies for making these technologies available to low-income and 22 

ethnically diverse communities at a lower cost. Potential policies could also target facilitating automated 23 

transit and/or shared AVs in low-income communities. 24 
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The proposed framework and the results of the empirical analysis would help decision-makers 1 

and stakeholders. The proposed framework can be considered as a tool for policymakers to envision AV 2 

safety implications for more informed decision-making regarding AVs supporting policies. Despite the 3 

fact that the empirical analysis study results stemmed from a retrospective analysis of 2017 crashes and 4 

the defined contrafactual scenarios can be sought unrealistic (at least in the near future), understanding 5 

AVs’ potential safety impact can benefit decision-makers in various ways. Providing insight into each 6 

technology’s potential in preventing crashes can help make more informed decisions on future 7 

investments and development plans on AV technologies. Learning of AVs’ potential in preventing road 8 

fatalities and its relationship with households’ socioeconomic and demographic characteristics can benefit 9 

decision-making regarding AVs adoption strategies and incentives. We expect the disparities in AVs’ 10 

safety impacts would facilitate the health sectors’ intervention in the policymaking process. Given this 11 

study’s promising results, the decision-makers can adopt policies to make the AVs accessible to 12 

underserved communities through shared mobility services or subsidies. 13 

Strength and Limitations 14 

The proposed framework augmented the existing target crash population studies and is a starting 15 

point for future AV safety research. Although the proposed framework accounts for some of AVs’ 16 

challenges, the following factors were not considered in the target crash population approach: mixed 17 

traffic safety issues (interaction of AVs and conventional vehicles at different market penetration rates), 18 

driver pre-crash reaction to hazard, potential riskier behavior of driver/passenger (as a result of 19 

overreliance on the system), changes in travel demand after AV implementation (Sohrabi et al., 2021). 20 

Given these limitations, the framework proposed here is expected to represent a theoretical upper bound 21 

(or optimistic scenarios) of the potential safety benefits of AVs, not their actual benefits. Uncertainties are 22 

inherited in variables incorporated in this study, including AV’s safety effectiveness estimations, the 23 
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system failure risk, and the disengagement risk. Given that there are a limited number of studies that 1 

evaluated or tested AVs’ safety, we could not account for the uncertainties in our analysis. Also, the 2 

accuracy of our empirical analysis depends on the reliability of the variables in the proposed safety 3 

quantification framework. Since the studies on AVs’ evaluation and testing are growing, future research 4 

can benefit from more accurate estimates of AVs’ technology safety effectiveness, system failure risk, 5 

and disengagement risk. The results of this analysis are based on exploring police-reported crashes, and 6 

therefore, many minor crashes were not considered. We did not consider the risk that AVs can impose 7 

outside the crash scenarios—e.g., riskier behavior of passengers by not using a seatbelt. This would result 8 

in overestimating AVs’ safety. Moreover, we evaluated AVs’ safety impacts of a contrafactual 9 

implementation scenario (100% market penetration for all levels of automation) for the sake of comparing 10 

the safety implications of different levels of automation. More realistic AV implementation scenarios 11 

would result in a more accurate estimation. AVs’ safety impacts are not limited to preventing crashes and 12 

can also mitigate crashes by reducing crash severity. This study solely focuses on preventable crashes, 13 

and the AVs’ impacts on mitigating crash severity were not considered. 14 

SUMMARY AND CONCLUSIONS 15 

This study has tried to assess the future safety impacts of AVs in communities with various 16 

socioeconomic backgrounds for the first time. Although the safety impacts of AVs have been evaluated in 17 

numerous studies, the equity assessment of AVs’ safety implications has never been quantified. Another 18 

contribution of the paper is the application of a much-improved safety quantification framework that 19 

accounts for some of the safety challenges of AVs’ operation, including AVs’ technology safety 20 

effectiveness, system failure risk, and the potential risk of disengagement from an automated system to 21 

manual driving. The proposed framework uses more robust estimations of AVs’ safety implications and 22 

provides insights into the potential safety impacts of AVs. We defined an empirical study and examined 23 
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the proposed framework using the crash data from the Dallas-Fort Worth area. The comparison between 1 

the safety implications of AV’s technologies and levels of automation showed the contribution of each 2 

technology and the variation in their impacts. The analysis of AVs’ safety impacts on communities with 3 

different socioeconomic backgrounds showed that the AVs would most impact low-income communities 4 

and communities with a higher percentage of the Black and Hispanic population.  5 

Future research is required to address some of the limitations of the proposed framework, 6 

including accounting for AV safety evaluation challenges and conducting an uncertainty analysis. The 7 

empirical analysis can be improved by using a more reliable estimation of AV safety quantification 8 

framework variables, defining empirical studies that consider realistic scenarios regarding AV market 9 

penetration, and using more accurate information regarding roadway crashes. Moreover, future studies are 10 

required to investigate the relationship between AVs’ safety implications and communities’ 11 

socioeconomic characteristics in terms of consumer purchase power. Although the preliminary findings of 12 

this study indicate that the underserved and ethnically diverse communities may benefit the most from 13 

AV deployment, however, we do not account for the consumer purchase power. The discussion about the 14 

equity implications of AVs is not limited to their safety impacts but also their potential in providing an 15 

independent mode of transportation for individuals with mental or physical disabilities and unlicensed 16 

(Sohrabi et al., 2020). Future work is needed to identify pathways through which AVs can affect equity 17 

and quantify their extent of impacts  18 
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